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bus is required. In general, the MTF is dependent on the shape of the current
waveform, and not simply on its time-ave age. However, a very large number of
such waveform shapes are possible, depen ing on what inputs are applied to the
circuit. This is especially true for J Scircuits, which draw current only
during switching.'The correct current waveform to be used for MTF estimation
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this process. Tnis isla waveform whose value at a given time is the weighted
average of all possibli current values at that time. The resulting methodology
is called a probabilistic simulation of the circuit.
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current waveform, but 6lso on the current variance waveform, especially in regions
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pected and variance current waveforms in the bus has been established. A lestrip-
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variance current waveform anywhere within a bus given the variance current waveforms
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EVALUATIOt

This technical report describes a technique for including the current variance
waveform in the calculation for the median-time-to-failure (MTF) for metal power
and ground busses due to electromigration in VLSI integrated circuits. Previously
described work details the use of probabilistic simulations in determining the
expected current waveforms in the branches of the busses. This work establishes
the relationship between the MTF and the expected and variance waveforms in the
bus. Several examples are presented which compares the current waveforms
obtained by using SPICE simulations and waveforms obtained using probabilistic
simulation with and without the variance contribution. The main advantage of this
approach is the ability to handle large circuits by replacing an exponential number
of deterministic simulation runs with a single probabilistic simulation run.
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1. Introduction

Under this task, we performed supplementary work related to the reliability analysis -f

Application Specific Very Large Scale integrated (ASIC VLSI) CMOS circuits. The major

work is currently being carried out under Task N-9-5716. The main goal of both tasks is to

determine the electromigration susceptibility of VLSI circuits. Electromigration is a major

teliability problem caused by the transport of atoms in a metal line due to the electron flow.

Under persistent current stress, clectromigration can cause deformations of the metal lines

which may result in shorts or open circuits. The failure rate due to electromigration depends

on the current density in the metal lines and is usually expressed as a median-time-to-failure

(MTF).

In this work we focus oir attention on the electromigration problem in the power and

ground busses. To estimate the bus MTF, an estimate of the current waveform in each branch

of the bus is required. In general, the MTF is dependent on the shape of the current waveform,

and not simply on its time-average. However, a very large number of such waveform shapes

are possible, depending on what inputs are applied to the circuit. This is especially true for

CMOS circuits, which draw current only during switching. The correct current waveform to

be used for MTF estimation is one that combines (in some sense) the effects of all possible

logic input waveforms. If we consider the set of logic waveforms allowed at the circuit inputs

as a probability space, the current in any branch of the bus becomes a stochastic process. The

expected current waveform is then the mean waveform (not a time-average) of this process.

This is a waveform whose value at a given time is the weighted average of all possible current

values at that time. The resulting methodology is what we call a probabilistic simulation

of the circuit. We have implemented this approach in CREST [1] which uses statistical

information about the inputs to directly derive the expected current waveforms.



In this task, we have established that the MTF estimate not only depends on the expected

current wavcform, but also on the current varimicr iavcform, especially in regions where the

current density is high. This report presents our findings and is organized as follows. In the

next section, we establish the relationship betwee:' the MTF and the expected and variance

current waveforms in the bus. In Section 3, we describe how an estimate of the variance

current wavcform is derived at the terminals of CMOS gates. In Section 4, we explain the

approach to be used in estimating the variance current waveform anywhere within a bus

given the variance current waveforms at the contacts to the bus. Implemcntation issues and

results are presented in Section 5.

2. Stochastic Current Waveforms and the MTF

Consider a metal line of uniform width and thickness carrying a consiant current. The

relationship between the MTF, t50, due to electromigration in the metal line and the current

density, j, has been extensively studied, and shown to be a complex nonlinear function (2],

as shown in Fig. 1. We will consider the MTF to be tso c I/f (j) where j is in A/cm - , and f

is a dimensionless nonlinear function, whose plot is shown in Fig. 2, which was derived from

Fig. 1.

If a metal line carries a varying current, of density j(t), then the MTF is tso cc 1/Jeff,

where Jeff depends both on f and on the waveform shape of j(t). It has been suggested [3)

that, if the waveform is periodic with period T and consists of a train of pulses k = 1,...

of heights jL. and duration t k, then

Jeff f(ik). (3)
k=1

For a general periodic waveform, we take the summation to the limit and write:
T

Jeff =1 f(j)dt. (2)
0

If the current waveform is not periodic, then better estimates of Jeff are obtained by using

larger values of T so that more features of the waveform are included. Therefore one can

write
Jeff= 1 -f(j)dt. (3)

T T o
0
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Now suppose that the current waveform is stochastic, i.e., it is a stochastic process j(t),

that represents a family of deterministic (rcal) current waveforms jk(t), with associated

probabilities PL., k = 1,..., X, over the (finite) interval (0, to]. Based on this information, we

can build a (non-stochastic) current waveform j(t), over [0,T) a T - , that is indicative uf

the current during typical opcration as follows. Consider a random sequence of the waveforms

jk(t), each being shifted in time, spanning an interval of length to, and occurring with its

assigncd probability Pk, as shown in Fig. 3. Let nk(T) be the (integcr) number of occurrences

of the wavcform jI,(t) in [0,T], and let 'IT = IT/toJ. If J, k 1,..., are defined as follows:

to

= J T f(j)dt, ('1)
0

then :

= Hil If f)dt = Jim Jk-7-T) J.. hin [T)] N.T-0 -d rT T-W I J
0 k= T k=1

By the law of large numbers (,1], lim.7_01nL(T)/nT = Pk , which leads to

e= t [o7fukdt P0 Jo f(jk)Pk dt (6)
k=1 0 "=

and, finally:
.ifo

Jaf = 
_ f Ef(j)]dt (7)
0

where E[ ] denotes the expected value operator. This is an important result; it says that

the ATF due to a stochastic current depends only on the expected waveforin of a nonlinear

function of the current.

Since f is nonlinear, Elf(j)] is not easy to evaluate. At low current values, where f is

linear (Fig. 2), E[f(j)] = f(Ej)). If this is substituted in (7) and compared with (2) it shows

that, when f is linear, the expected current waveform Eli] derived in [1) may itself be used as

the current waveform j(t) in (2) for MTF estimation. This establishes the importance of the

expected current waveform for electromigration failure analysis. In general, f is nonlinear,

and a generalized approach will be developed below.

3



At any time t, the process j(t) can be thought of as a random variable j with mean

A EUjJ, and variance a =" (j-/,)2J. In gCneral, thep th moment ofj is 11p. =

To estimate the mean of f(j), Elf(j)], we use a Taylor series expansion of f, which leads to

Ef() f(11j) -I f"€(11)-.- + ..- + f(P), I)L .* (S)

It is evident that, when f is linear, (8) reduces to

Elf(j)J = f(EU), (9)

as observed above. Hence using the expected current waveform as an actual current waveform

for MTF estimation based on (2) amounts to making a first-order apl)roximation in (8).

Naturally, higher order approximations would lead to better results. In particular, if f is

approximated by a quadratic in the neighborhood of iii, then

E ( j)] = f(WJ;) + f"(q1 o.-. (10)

This second-order approximation becomes exact if f(j) is represented by the straight lines

corresponding to j 1 and j2 in Fig. 2. It is more accurate than (9) since it covers a wider range

of currents. As a result, equations 10) and (7) offer a new, more accurate technique for

computing the MTF. In order to make use of this technique, we need to derive the variance of

the current waveform in addition to its expected value. As pointed out in the introduction,

the estimation of the expected current waveform has already been described in our previous

work [1]; the next section will discuss the derivation of the variance.

3. Derivation of the Gate Variance Waveforms

Figure 4 shows a generic CMOS gate structure which we will use in our derivation. The

variance waveforms for the gate total and output currents will be modeled by triangular

pulses V[igot(.)j and V[i(t)J, respectively, with peak values of V[ 0ot] and 1/[1]. If an event

occurs at the gate input at time t, then we denote by t- and t+ the instances of time

immediately before and after the event, respectively. Focusing for now on the output current

pulse, its variance waveform starts with a peak of V[IJ = V[i(t+)] at time t and decays linearly

% " -; .. . . . 4



to zero at time t + r. Since V(j = .[12] - r[1]2 [4), and since CREST already derives the

expected pulse peak (E[I]), we will concentrate here on the derivation of E[12 ].

Let ip = ij, + ij,2 and in = i,,! + i,,2. It is easy to verify that ip = ip x C,,/(CP + Cot),

and i,,I = i,, x Cp/(Cp + C,,). Therefore:

.r. i2(L)] = LEi2(t)1(, & + El_____ '

The term containing E[ip(L)in(t)] is omitted (it is zero) since at least one of the charging

currents is zero at any given time. In particular, tle value at the peak is

B[2~jR[10X C+" +_E_201__C13(2()-CO = 112x(t x (k-) 4+ E(I,(L)! x (c,+j,

The values of E(lJ,] and S3[1,] are derived as follows. For E[1 ,, consider the p-part of

the gate, and let every transistor Tk be represented by a switch of on-conductance .oi.k 5].

Based on this switch-network model of the p-block, let Gp(t) be the random conductance

between the output node and V, . Gp is - function of the individual transistor random

conductances gk, where Ok, is 0 if the transistor is off and 9o,,, if it is on. If an event occurs

at the gate at time t, then the value of Gp(t+) and the previous state of the output node,

Vo(t-), will determine p. Formally, we have E[Ii] = E[(V1 (t-)) " x G,(t+)], which

becomes

E[,] =Vd x '[G "(t) I Gp(t-) = 01 x P(,(tj-) = 0)

where P(A) is the probability of the event A, and E[A I B) denotes the conditional expectcd

value (4) of A given B. The formula is correct because if GptQ-) = 0 ( 0) then 11(t-) = 0

(11,d). Similarly for the n-part of the gate, we get

=r -Vx E[G(t+) I G,(t-) = 0] x P(G,,(t-) = 0)

To derive the conditional expectations, consider a graph representa-on of the p-block

(or n-block), where every edge in the graph is labeled with E[1!(t+) I Gp(t-) = 0],

E[gk(t+) I Gp(t-) = 01, and the gate node probabilities of its corresponding transistors.

The details of how these quantities can be derived for every transistor can be found in 15].

5



Then perform a graph reduction operation, which, simply stated, involves a number of se-
ries/parallel combinations and node eliminations that reduce the graph to a single edge,
whose labels are the requircd statistics E[G (l+) I Op(I-) = O] and E[Gp(L+) I G,(L-) = 01.
Similarly for the u-block.

Having found the peak V[IJ = E[121 - E(1 2 for the output current, the time span r
will be found by first solving for the area under the V[i(t) pulse. Notice that, if i(t) is a
triangular pulse of height I and area q, then :

0*, i2()d l =Iq
- Ul

In this case, q is equal to the charge delivered to (or from) the output node capacitors. From

this it follows that,

j E[i2(t)]dt =_ 2 tandd = 2

The second equation follows since E[i()] is a triangular pulse of height, E. ]] and area E[q].
Therefore, the variance pulse has an area :

VIII ×z /o v[i(1)lat=-=

The value of E[tq] can be written as :

E[Iq] = Epp + it,) x (q], + q,,)J.

where I,, (Id1) is the peak of ipl(t) (i.,()), and q,,, (qj) is the charge delivered L:, i, (t)
(i~j(t)). When the p-block is conducting, the 1-block is not conduting, anrd ipj(t)f.O, i,,1 (t)
= (, qp1 ;:- VddC,, and q,,, -0; while when the n-block i. conducting, the p-block is not, and
i,,,(t)-O, i(t) = 0, q,,, ; ldCp, and qp ; 0. It follows then that:

Efeq] = C it

The time span of the gate output current variance pulse is, therefore:

6 - ElllE[q]3 V171 )



If itot(t) is vie total gate current, then )

(It=l, = (L1otq~o1l -E~fI ~od~,,).

Unfortuinately, E (o1qogJ dues not have a simple expression as was found for E[Iq] abov. \

have chvsen to use a conservative estimate based el tie following assumption, %lhceuer

a node in the p.block (n-block) is charged to 1tdd (I,), then every other node in the p.

block (n.block) is also chiarged to 1t (IV). This assumption is true for simple gates, and

overcitimates the current diarge product in more complex cases. 3ascd on this assnmption

one can show [5) that

E[hoqo,] = r.,Q,,c E[I,]I + Eq,,,[ 1  Q,,Cd (I,,
E[ q, I Up + C, +  Eq,,l ",7 - '

where Eqp] and EJ[q,,] are available as equations (9) k& (10) in (6), E~q,,o 0 ] and E(q,,,joj1 are,

respectively, the first and second summations in equation (7) in [6], and

QP,= Z vddC, Q, = Z vdC,.

ic P block icjN block

As was assumed for the expected current pulse [5, 6[ we let the time span of the gate

total current variance pulse b- equal to that derived for the gate output current, therefore .

E sil-S[JEq]

4. Estimating the Variance Current Waveforms in the Bus

Since the current density j(t) in any branch of the power or ground bus is directly
proportional to the current i(t) in that branch, then, to simplify the presentation, we will

discuss the derivation of a2 rather than a2. The variance of the current waveform is a time

function 4,(t) which we will refer to as the variance waveformn. Furthermore, we will discuss

the power bus only since the ground bus analysis is similar.

The current in a branch of the bus, i(t), is a function of the currents being drawn off the

bus contacts, ij(t),j = 1,... ,u. Each of these is, in-turn, simply the sum of the individual

gate currents tied to each contact

ij(t) = ij,(t) +.. + ,jk(t). (11)

7



Thus, in the framework of our probabilistic simulation technique, tho proct.ss of driving the

variance waveforms consists of three steps :

.1- Using tle statistics of the signals at the inputs to each logic gate, derive the variance

waveform for its current.

-2. Combine these variance waveforms at each contact point to derive the variances of tle

contact currents.

-3- Using the bus topology, and the variances of the contacL currents, derie the variances

of the bus branch currents.

Step I has been described in Section 3 above. The other two steps will be described below.

The critical issue is the correlation between the differcnt current wmiuforms. Since such

correlation is too expensive to derive for VLSI circuits, we will occasionally be making con-

servative approximations to simplify the problem. Our experience with the probabilistic

simulation approach suggests that neglecting the correlatiur, between different current wave-

forms gives good results in most cases.

Based oi this premise, we assume that the gate currents tied to the same contact are

uncornrelted. This immediately provides a simple solution for step 2, using (I1), as follows

Ca2(j) = a2 (t) + ---+ a2,(). (2

The remainder of this section will be devoted to the more difficult task of solving step 3, i.e.,

deriving the bus current variance waveforms from those of the contact currents.

The metal bus can be modeled as a multi-input multi-output, causal, linen; time-

invariant, (LTI) system with causal inputs xj and outputs yi. The inputs xj(t), j =I,... , i

represent the contact currents, and carry the stochastic processes ij(t) of known variance

waveforms a (1). The outputs y1(t), i = I,..., m represent the [us branch currents at which

the variance waveforms, Ao(t), are required. Let h,,(t) be the impulse response function

relating yj(t) to xj(t)

yM(t) h hij(t) * xj(t), i M,...,m (13)
j=1

where "" denotes the convolution operation.

8



It is well known (see (4), ppge 209) that the variances of the system inputs are not enough

to derive the variances of its outputs. The auio..conilation of each input, R x (1tt 2) a

B(xj(tj)xj(b-)I, is also required. Since the input processes are not uidc-sensc statiornry [1),

an exact bnalytical solution can be quite complex, even if the auto.correlation were knowr,.

Therefore, as is often necessary, we will make certain simplifyivg assumptions about the

structure of

We will wssume that the correlation bctween xj(t) and xjt + -r) goes to zero as r - co.

In terms of the aido-couarlancc, Cxjzj(11,i2) _ I1jzj(t1,12)_ qX:(t1)qX1 (t2), this will be

formulated as :

C:xzj(til,t) = (1(L), and O.jx, (ti,t3.) = 0 for it, - 121 >_ T, (1H1)

where ' is a (typically small) time interval.

Consider the discrele time system obtained by sampling, with period T, the continuous

time system defined by (13). If xj[k xj(kT) are the discrete processes at the inputs, and

ylfk] A y;( T) are the discrete output processes, then

y,[kJ = ~h')(kj * xj[kJ, i= i,...,,(
.=1

where h)(k) is the discrete impulse response function relating y,(k] to xjlk). As shown

below, the discretized output variance waveforms can be derived irrie.,pective of the shape

of Cxr, (t,t) for it, - 1l1 < T. The continuous variance waveforms can then be obtained

by interpolation. Strictly speaking, therefore, the sampling period T should be small ; 1/T

should be larger than the largest frequency component of the inputs. However, since fline

waveform details are not of paramount importance in this work, we need only restrict T to

be small enough so that waveform features in so small an interval are inconsequential.

To simplify the notation, define yij[k] -  h)[k] , xj[k]. Furthermore, as pointed out

above, we will neglect the correlation between the contact currents. Hence the xj inputs are

uncorrelated, arid
I j [=

j-l



We have thus reduced the problem to analyzing a single-input single-output discrete ;I7I

system :

yij[kj h0x(kJ . h()jxjk- . (17)

Let RjrkJ A xjlkl - ,,[kl and 5k) g yulk - i,,,k). Then n2,,k) = E[,j[/:-}2 a,,d

yj[k' = hl4)ik - Rj[kJ, hence

Furthermore, it is easy to see that .[kj[k1 jj[kj] = C,,j (kj, k2), which, using (14), gives

[k) W) [x a2 (k - = I1: [k) 2 [k). (19)

And, finally, the variance waveforms for the system outputs are, using (16)

a.,[k]= h( [k) o.2[k], i= 1,..., M. (2_0)
i=1 j Z

In other words, the variancs of the system outputs (bits branch currents) can be obtained

froin the convolution of the variances of its inputs (cottact currcis) with the squares of its

discrete impulse response functions. This discrete convolution can be easily performed once

the discrete impulse response functions are found. Of course the summation need not be

taken to infinity, and may be convcniently truncated after Ih(')[t] is less than some small

value. To obtain the discrete impulse response functions, note that if a unit-step input

current is applied at contact j, with all other contact currents held at zero, and if the

resulting outputs yi(t) are monitored, then :
,(d)tkT

h3,f[k = yi(kT) - yi((k - 1)T) = j Thij(r)dT, i = 1,...,7. (21)

This suggests two methods for deriving hl(d[k]. The first uses a simulation program such as

SPICE to simulate the bus with unit-step input currents applied at each contact (one at a
{d)

time), while monitoring the bus branch currents. This gives the mnn functions h.1 [k] using

(21). Another (approximate) method would be to make use of the second cquality in (21).

10



if the continuous impulse r.3ponse functions are approximated using some RC time-constant

analysis of the bus, then the discrete impulse response functions can be obtained from them.

For very large chips, it may be prohibitively expensive to perform the required convolu-

tions. One can simplify the calculations by making an additional assumption as follows. If

the bus is known to be ufast", i.e., if h14)1k) dies down faster than changes in ,2 k), then

(19) reduces to

gnnO

So the convolutions in (20) can be replaced by simple multiplications, and the constants

r~o041))[x canl be derived in a pre-processing step from the impulse response functions

and stored in a single ti x n constant matrix.

If the chip is too big to even derive hL)(kj, then one further simplification can be made

as follows. If h4)1k) dies down faster than changes in xj[k then (17) reduces to yu[k]

xjfkj) o (x), and so:

Yi k] n: (f )[k)j)2 (2.3)

The constants ( ' h ])2 call be very easily obtained as follows. Note that Z M-0 h41)(n,

is the steady staic current in branch i in response to a unit-step input current at contact .,
with all other contact currents held at zero. If the bus is modeled as a resistive network,

then the steady state node voltages in response to such inputs are the entries of the driving

point impedance matrix. So if the node.admittance matrix is built by simple inspection of

the bus and then inverted to produce the driving point impcdance matrix, the steady state

currents are immediately available.

5. Implementation and Results

The variance calculation technique outlined above has been implcmentcd in CREST. \W\e

present below the results of CREST runs on a variety of circuits, showing both waveformn

comparisons and timing performance.

We start out with a simple example, a 2-input CMOS NAND gate. The variance wave-

form comparison between CREST and SPICE is shown in Fig. 5. The SPICE waveform is

11



derived by running SPICE on the NAIND gate for all possible logical transitions at its in

puts, deriving the expected current waveform by doing a time.point .-craging of the result s.

and then using that to find the variance as the time-point average of (i - /(i]) 2.Since the

object of this research is to handle very large chips, and since elect, .aigration models fur

ac waveforms are still controversial, it makes little sense to shoot for pt fect -.ccuray in tlie

current wavefornms. It is more important to be able to derive in a very -hort Iime a. A 'e'urlr)

that matches the peak and general shape of the SPICE waveform.

Another single-gate comparison is shown in Fig. 6 for a CMOS complex gate. The
comparisons for two larger circuits are shown in Fig. 7 (for an XOR circuit) and Fig. N (for

a ,8.-MOS"ET 2-bit ripple adder circuit).

Our final example is a much bigger and more complex circuit; it is a 648.MOSFET .1-bit

parallel multiplier. This circuit is too big to make the 28 required SPICE simulations. \W
will, therefore, show two different CREST runs to demonstrate that the variance computatiun

works well even when the heuristics introduced for handling large circuits in (1) are used.

In Fig. 9 we compare a full accuracy CREST run and a heuristic CREST run in which

all internal nodes of the multiplier were assumed independent. The excellent agreement

reaffirms the conclusion made in [1) that as a circuit becomes larger, the correlation between

its internal nodes may be safely neglected.

We next examine the importance of the variance waveform for MTF estimation. The

expected and variance waveforms combine to provide a Jeff dc current density value tu

represent the ac current waveform for MTF estimation as given in (7) and (10). Equation

(7) is first evaluated using only the first term of (10), i.e., using only the expected waveform,

to give Jfnl. Equation (7) is evaluated again using both terms in (10), i.e., using both

expected and variance waveforms, to give Jef.,. The percentage contribution of the variantc

waveform to Jfr is then measured as x 100. The results are tabulated in the fifth

column of Table I for a number of test examples. The results clearly establish the importanice

of the variance waveform in addition to the expected waveform.

Finally, we illustrate the speed performance of CREST with the variance estimation

built in. Table 1 shows also the speed comparisons between CREST and SPICE for all tht
examples presented above. The speedup becomes much better for larger circuits (1529X fut
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the adder and i1595X 'or the multiplier). In fact, the speedup should grow exponentially,

because an exponential number of deterministic simulation runs are replaced by a single

probabilistic simulation run. Ve point out the case of the multiplier circuit (the large-t

circuit in the table) with thc heuristic CREST run (last row in Table 1); considering the

excellent waveform comparison in Fig. 9 along with the dramatic speedip of 11595X in

Table 1, this establishes the feasibility of solving large VLSI chips.

Table 1. Execution time comparisons. Time is
in CPU seconds on a VAX-11/780; size refers to

ithe number of transistors.
Variance

Circuit Size SPICE CREST Contribution Speedup
Nand 4 ,41.75 0.90 110% ,16X

Complex 6 244.15 1.09 185% 224X
Xor 16 156.00 3.13 236% 146X

Adder 541 32620.42 21.33 107% 1529X
Multiplier 6.18 697530.88* 1871.99 219% 373X
Multiplier 6.18 697530.881 60.16t 200% 11595X

'Estimnated (0 tilncs the cost of a typical logical SPICE run).
tileuristic CRST run, all others are full accuracy CREST.

6. Summary and Conclusions

We have discussed the probicm of estimating the median time-to-failure (MTF) due to

electromigration in the power and ground busses of CMOS VLSI circuits. In this task we

have verified that including the variance waueforn of the current, in addition to the czpccicd

waveform derived in [1], further improves the accuracy of MTI' estimation. This was done by

showing that the variance contribution to the MTF estimate can be in the range of 100%, to

2007c relative to that of the expected current waveform. We have described a novel technique

for deriving the variance waveform, and its implementation in the probabilistic simulatm

rREST. The results of several CREST runs have been presented, and they show good

waveform agreement with SPICE, as well as excellent speedups over traditional approachesl
- a speedlup of over 11000X was demonstrated on a 6,18-transistor circuit.

This work proves that the expected and variance waveforms of the stochastic current

model are : (1) essential to derive an accurate MTF value, and (2) can be efficiently derived

13



using tile probabilistic sMmlatioll approach. 'file mait advalltage of this approad is tie

ability to handle harge circuits by replacing au exponetitial number odieterministic simuIatolla.

riuis with a single probabilistic simulation rul. Witho~it such a technique, aualyziug thr

reliabiliL y of Iarge circuits would seem to be am impossibility.
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Figure 1: The dependence of MTF on current
density, reproduced for convenience from (2). The
dashed lines show the results of the approximation
iso cj" for n 1, 3/2, and 2.
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Figure 2: A plot of f(j), obtained from Fig. 1 by
inverting and appropriately scaling the ordinate
axis.
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